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Efficient CO and acrolein co-production via 
paired electrolysis

Xue Wang    1,2,6, Peihao Li1,6, Jason Tam3, Jane Y. Howe3,4, Colin P. O’Brien    5, 
Armin Sedighian Rasouli1, Rui Kai Miao    5, Yuan Liu1, Adnan Ozden5, Ke Xie    1, 
Jinhong Wu5, David Sinton5 & Edward H. Sargent    1 

Paired electrolysis—the combination of a productive cathodic reaction, 
such as CO2 electroreduction (CO2RR), with selective oxidation on the 
anode—provides an electrified reaction with maximized atom and energy 
efficiencies. Unfortunately, direct electro-oxidation reactions typically 
exhibit limited Faradaic efficiencies (FEs) towards a single product. Here 
we apply paired electrolysis for acidic CO2RR and the model organic 
oxidation allyl alcohol oxidation reaction to acrolein. This CO2RR alcohol 
oxidation reaction system shows (96 ± 1)% FE of CO2 to CO on the cathode 
and (85 ± 1)% FE of allyl alcohol to acrolein on the anode. As a result of this 
pairing with organic oxidation on the anode, the full-cell voltage of the 
system is lowered by 0.7 V compared with the state-of-art acidic CO2-to-CO 
studies at the same 100 mA cm−2 current density. The acidic cathode avoids 
carbonate formation and enables a single-pass utilization of CO2 of 84% 
with a 6× improvement in the atom efficiency of CO2 utilization. Energy 
consumption analysis suggests that, when producing the same amount of 
CO, the system reduces energy consumption by an estimated 1.6× compared 
with the most energy-efficient prior acidic CO2-to-CO ambient-temperature 
electrolysis systems. The work suggests that paired electrolysis could be a 
decarbonization technology to contribute to a sustainable future.

The carbon dioxide electroreduction reaction (CO2RR) powered using 
low-carbon electricity provides one route to chemicals and fuels1. 
Recently, this field has seen impressive advances in respect of selec-
tivity and current density2–12. Nevertheless, CO2RR still suffers from 
challenges that include (bi)carbonate formation when alkaline/neu-
tral electrolytes are employed, low CO2 utilization (that is, low atom 
efficiency) and high full-cell voltage13–15. To produce CO in CO2RR via 
a two-electron-transfer process, the upper bound on CO2 utilization 
is 50% in neutral electrolyte, and it is lower still in alkaline conditions 
because CO2 is lost to the electrolyte16,17.

CO2RR in acidic media addresses the CO2 loss issue resulting from 
(bi)carbonate formation and crossover in alkaline or neutral media 

during reaction. As a result, it increases the CO2 utilization. Challeng-
ing, though, is the kinetically favoured hydrogen evolution reaction 
(HER) in acidic media18–21. In recent years, several studies have reported 
CO2RR in acidic media with the suppression of HER at relevant current 
densities above 100 mA cm−2 (ref. 22–26); however, the full-cell voltage 
required in previously reported acidic CO2RR systems has been high, 
typically ~4 V (refs. 23,24), corresponding to high energy consumption.

Most CO2RR studies pair with the oxygen evolution reaction (OER) 
on the anode (CO2RR-OER systems)2–12,18–26. The standard potential 
of OER is 1.23 V versus reversible hydrogen electrode (RHE)27, and O2 
offers limited economic value. This motivates interest in CO2RR paired 
with an efficient anodic reaction that requires a lower thermodynamic 
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above 100 mA cm−2 (Supplementary Table 1). The full-cell voltage aver-
ages to 3.2 V over the course of 10 h operation, and the energy consump-
tion for producing 1 kg of CO in this paired electrolysis system is 44 MJ, 
representing a decrease in the voltage of 0.7 V and a reduction of 1.6× in 
energy consumption relative to the most energy-efficient prior reported 
acidic ambient-temperature CO2-to-CO studies.

Results
CO2 electroreduction in acidic media
We began by exploring CO2RR in acidic media coupled to OER. Ag is 
known (from prior neutral and alkaline studies) for its selectivity to 

potential, such as selective oxidation of organics27–29. Until now, how-
ever, such anodic reactions have typically seen modest Faradaic effi-
ciency (FE) when operated near ambient conditions30,31.

In this Article, we report a paired electrolysis system with low 
energy consumption (Fig. 1a): cathodic CO2RR to CO in acidic media 
coupled to anodic allyl alcohol oxidation reaction (AOR) to acrolein. 
In this paired electrolysis system, we achieve a CO FE of (96 ± 1)% at the 
cathode and acrolein FE of (85 ± 1)% at the anode at 100 mA cm−2 (Fig. 1b). 
When it is optimized for single-pass utilization (SPU), the cathode 
reaches a CO2 SPU of 84%, fully a 6× improvement compared with the 
highest SPU value reported in prior acidic CO2-to-CO studies undertaken 
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Fig. 1 | A paired electrolysis system co-producing CO and acrolein. a, A 
schematic of the paired electrolysis system consisting of CO2-to-CO at the 
cathode and allyl alcohol-to-acrolein at the anode. b, A comparison of product 

selectivities at the cathode and anode, full-cell potential, CO2 SPU and energy 
consumption in this work with those of state-of-the-art CO2-to-CO ambient-
temperature electrolysis systems.
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Fig. 2 | CO2RR performance in the CO2RR-OER system. a, A schematic of 
the CO2RR-OER system. b–d, The CO2RR gas product distribution on 500 nm 
sputtered Ag/GDL in 3 M KCl electrolytes, and full-cell voltage of the CO2RR-OER 
system under different current densities adjusted by H2SO4 to pH 1 (b), 2 (c) and 
3 (d) in the CO2RR-OER system. In b–d, the error bars of the FEs represent the 

standard deviation of three independent samples and the data are presented 
as mean values ± standard deviation with an n of 3. The error bars of the full-cell 
voltages represent the standard deviation of potentials (n = 600) during the 
constant current electrolysis for 10 min, and the data are presented as mean 
values ± standard deviation.
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CO (ref. 17). We fabricated Ag cathodes by sputtering a layer of Ag on a 
carbon-based gas diffusion layer (Ag/GDL). Scanning electron micros-
copy (SEM) (Supplementary Fig. 1a,b) shows that the Ag layer consists 
of nanoparticles. Powder X-ray diffraction (XRD) pattern and X-ray 
photoelectron spectroscopy (XPS) of the cathode show the catalyst on 
the GDL is crystalline metallic Ag (Supplementary Fig. 1c,d). The anode 
electrode was prepared by spray coating commercial carbon-supported 
Pt nanoparticles with a size of ~5 nm (Supplementary Fig. 2) on Ti fibre 
felt (Methods).

We used a flow cell electrolyser in a two-electrode configuration 
(Supplementary Fig. 3) for electrolysis. As illustrated in Fig. 2a, on 
the cathode, we used an acidic electrolyte prepared using 3 M KCl 
electrolyte adjusted using H2SO4. The use of acidic electrolyte on the 
cathode enables a cation exchange membrane (CEM), avoiding carbon-
ate crossover and, hence, preventing CO2 evolution on the anode, but 
reliance on acidic electrolyte requires a strategy to suppress HER and 
activate CO2RR, something we achieve using K+ ions (we used 3 M KCl) 
added to the acidic catholyte22,25,32. For bulk pH 1–3, the CO FEs are ~90% 
and the H2 FEs are below 3% on 500 nm sputtered Ag/GDL in the current 
density range 100–200 mA cm−2 (Fig. 2b–d, Supplementary Fig. 4 and 
Supplementary Table 2). Three-hundred nanometres sputtered Ag/
GDL also delivered CO FE of ~90% in the range 100–200 mA cm−2 under 
bulk pH of 1 (Supplementary Fig. 5). In this CO2RR-OER system, we 
achieve a full-cell voltage of 3.5 V—without correction—at 100 mA cm−2 
in electrolyte having pH 1 (Fig. 2b).

Paired electrolysis of CO2RR and AOR
We then sought to switch the anodic reaction to organic oxidation 
paired with the above cathode (Fig. 3a). We selected allyl alcohol oxida-
tion since, in the ideal case, a CO2RR-AOR system has a lower potential 
compared with idealized CO2RR-OER. Allyl alcohol is available via the 
formic acid-mediated deoxydehydration of glycerol33, and acrolein is 
a feedstock for acrylic acid34.

We first investigated the feasibility of performing anodic AOR in 
acidic media. Acidic anolytes of different bulk pHs consist of 0.5 M allyl 
alcohol and different concentrations of H2SO4 and K2SO4 (0.2 M H2SO4 
for pH 0.8, 0.05 M H2SO4 for pH 1.3, and 0.1 M K2SO4 for pH 5.4). Attrac-
tively, by switching OER to AOR in the anode, the full-cell voltages were 
reduced to the 2.7–2.8 V range at 100 mA cm−2 (Supplementary Fig. 6a). 
However, the liquid products—acrolein and acrylic acid—following 
AOR were produced with FEs below 2% at 100 mA cm−2 quantified by 
high-performance liquid chromatography (HPLC) (Supplementary 
Fig. 6b).

We then studied anodic AOR in alkaline media. Here, we found 
that acrolein generation is promoted compared with that in acidic 
media and that the choice of anolyte affects selectivity in allyl alcohol 
oxidation. Seeking optimized alkaline anolyte conditions for AOR, 
we screened a series of anolytes with different concentrations of allyl 
alcohol and KOH in the CO2RR-AOR system, wherein we evaluated 
simultaneously the cathodic CO2RR performance and anodic AOR 
performance (Fig. 3b,c and Supplementary Tables 3 and 4). On the 
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Fig. 3 | AOR performance in the CO2RR-AOR system. a, A schematic of the 
CO2RR-AOR system. b, The AOR performance in 0.5 M allyl alcohol electrolyte 
containing different concentrations of KOH at 100 mA cm−2. c, The AOR 
performance in 0.05 M KOH electrolyte containing different concentrations 
of allyl alcohol at 100 mA cm−2. d, The AOR performance in 0.5 M allyl 

alcohol + 0.05 M KOH electrolyte at 100 mA cm−2 using anode electrodes with 
different Pt loadings. The catholyte in b–d is 3 M KCl adjusted to pH 1 using H2SO4. 
In b–d, the error bars represent the standard deviation of three independent 
samples and the data are presented as mean values ± standard deviation with an 
n of 3.

http://www.nature.com/natsustain


Nature Sustainability

Article https://doi.org/10.1038/s41893-024-01363-1

cathode, at 100 mA cm−2, the CO2RR product distribution is similar 
among CO2RR-AOR systems with different alkaline anolytes, and the 
main product is CO, with FE >90% (Supplementary Tables 3 and 4). 
However, the selectivity towards acrolein and acrylate on the anode 
depends on the alkaline anolyte. We optimized the concentration 
of KOH and allyl alcohol in the anolyte and obtained an acrolein FE 
of (85 ± 1)% and an acrylate FE of (3 ± 1)% at 100 mA cm−2 under 0.5 M 
allyl alcohol + 0.05 M KOH anolyte (Fig. 3b,c). In HPLC, in addition 
to peaks assigned to acrolein, acrylate and allyl alcohol, there exist 
peaks between acrolein and acrylate (Supplementary Fig. 7). Nuclear 
magnetic resonance (NMR) and gas chromatography–mass spec-
trometry analyses demonstrated that there are small amounts of 
allyl glycidyl ether, 3-hydroxypropionaldehyde, 1,3,3-propanetriol, 
3-hydroxypropionate, propionate, 2-(oxiran-2-ylmethoxymethyl)
oxirane and 2,3-dimethylidenebutane-1,4-diol (Supplementary Figs. 8 
and 9); these taken together account for ~12% total FE.

To explore the effect of the catalyst on the anodic AOR perfor-
mance, we screened a series of carbon-supported metal catalysts 
with different metal loadings—from 1.2 to 3.4 mg cm−2—in allyl alcohol 
oxidation, including Pt, Pd, Ru and Au (Fig. 3d and Supplementary 
Figs. 10–16). The anodes were prepared via the same spray coating 
approach. Among these anodes, the Pt anode with 2.0 mg cm−2 Pt load-
ing delivers the highest acrolein FE of (85 ± 1)% at 100 mA cm−2 with allyl 
alcohol conversion of 15% following 10 min of electrolysis using 0.5 M 

allyl alcohol + 0.05 M KOH anolyte (Fig. 3d, Supplementary Table 5 and 
Supplementary Figs. 17–19).

Under the optimized condition at the anode determined via the 
studies above—0.5 M allyl alcohol + 0.05 M KOH anolyte and anode 
electrode with 2.0 mg cm−2—we further evaluated the performance 
of CO2RR-AOR system in the regime of 100–200 mA cm−2 (Fig. 4, Sup-
plementary Fig. 20 and Supplementary Table 6). With the increase 
in the current density, the selectivity towards the main product, 
acrolein at the anode and CO at the cathode, declined (Fig. 4a,b). At 
100 mA cm−2, we achieved a CO FE of (96 ± 1)% in CO2RR—comparable 
to other high-performance acidic CO2-to-CO reports23,25,35—and the 
highest acrolein FE of (85 ± 1)% in AOR. At the same current density, 
the full-cell voltage of CO2RR-AOR system decreased compared with 
that of the CO2RR-OER system (Fig. 4c).

To reduce the energy consumption of gas product separation after 
CO2RR, we pursued a high CO2 SPU in the CO2RR-AOR system. We varied 
the CO2 feed rate, achieving CO2 SPU of 84% at 100 mA cm−2. This is 6× 
higher than in the highest-SPU prior reports of acidic CO2-to-CO that 
were done above 100 mA cm−2 (Supplementary Table 1)22–25,35, while 
maintaining a total C1 FE of 83% in CO2RR under the CO2 feed rate of 
0.36 ml min−1 (Fig. 4d) and achieving an acrolein FE of 85% in AOR. In 
addition, we note that CO FE declined with the decrease in CO2 feed 
rates while the CO2 SPU increased. System optimization can be car-
ried out to select the best combination of CO FE and CO2 SPU. We also 
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Fig. 4 | AOR and CO2RR performance in the CO2RR-AOR system. a, The AOR 
performance in 0.5 M allyl alcohol + 0.05 M KOH electrolyte under different 
current densities. b, The CO2RR gas product distribution under different current 
densities in the CO2RR-AOR system. Anolyte: 0.5 M allyl alcohol + 0.05 M KOH. 
In a and b, the error bars represent the standard deviation of three independent 
samples and the data are presented as mean values ± standard deviation with a 
number of 3. c, A full-cell voltage comparison between the CO2RR-AOR system 

(anolyte: 0.5 M allyl alcohol + 0.05 M KOH) and the CO2RR-OER system (anolyte: 
0.05 M KOH) under different current densities. The error bars represent 
the standard deviation of potentials (n = 600) during the constant current 
electrolysis for 10 min. The data are presented as mean values ± standard 
deviation. d, The FEs of CO, formic acid and H2, as well as CO2 SPU with different 
CO2 feed rates at 100 mA cm−2. The catholyte in a–d is 3 M KCl adjusted to pH 1 
using H2SO4.
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investigated the CO2 SPU at 200 mA cm−2 (Supplementary Fig. 21). 
Similar to the trend seen at 100 mA cm−2, CO FE diminished with the 
decrease of CO2 feed rates at 200 mA cm−2, and we achieved the highest 
CO2 SPU of 73% at CO2 feed rate of 0.72 ml min−1.

We evaluated the overall energy consumption of producing 1 kg 
of CO. We sought, in the context of a paired CO2RR-AOR system, to 
account for CO electroproduction, gas separation and carbonate 
regeneration for the recovery of CO2 and of the alkaline electrolyte, 
and for liquid product separation at the anode (Fig. 5, Supplementary 
Tables 7 and 8, and Supplementary Text). Because the CO2 utilization 
is high, the energy of separation of CO/CO2 is reduced relative to prior 
reports; the use of acidic conditions avoids (bi)carbonate that leads in 
some prior reports to the need for separation of CO2 on the anode gas 
side as well. The system studied herein requires 44 MJ kg−1CO, lowering 
energy consumption by 1.6× compared with the most energy-efficient 
prior systems among acidic CO2RR-OER systems with a CEM in a flow 
cell23, acidic CO2RR-OER systems with bipolar membrane (BPM) in a 
flow cell24, and alkaline CO2RR-OER systems with an anion exchange 
membrane (AEM) in a membrane electrode assembly (MEA) cell5.

We operated the optimized CO2RR-AOR system at a current density 
of 100 mA cm−2 for 10 h (Supplementary Fig. 22). Over the course of 
10 h of continuous operation, the CO2RR-AOR system exhibits stable 
CO selectivity (~90%) in cathodic CO2RR and acrolein selectivity (>82%) 
in anodic AOR. The full-cell voltage of the CO2RR-AOR electrolysis 
system averaged to 3.2 V during 10 h of operation, 0.8 V lower relative 
to the corresponding CO2RR-OER system having an averaged full-cell 
voltage of 4.0 V during ~ 4 h operation (Supplementary Figs. 22 and 23).

Discussion
In this work, we develop an efficient paired electrocatalysis system 
with low energy consumption comprising acidic CO2-to-CO at the 
cathode and allyl alcohol oxidation at the anode. We achieve CO FE of 
(96 ± 1)% in cathodic CO2RR and acrolein FE of (85 ± 1)% in anodic AOR 
at 100 mA cm−2, associated with an averaged full-cell voltage of 3.2 V 
during 10 h operation—lowering by 0.7 V in full-cell voltage relative to 
the best previously reported full-cell acidic CO2-to-CO studies. Sup-
pressing HER in acidic environment, we achieve a high CO2 SPU of 84% 
for C1 products in CO2RR. During 10 h operation at 100 mA cm−2, our 
CO2RR-AOR system delivers stable and high selectivities towards CO 
(~90%) in cathode and acrolein (>82%) in anode. Energy consumption 

analysis suggests that, compared with the most energy-efficient prior 
systems, this CO2RR-AOR system reduces energy consumption by 1.6× 
when producing the same amount of CO.

This work indicates a route to produce chemicals efficiently at 
both the cathode and the anode through paired electrolysis. At the 
same time, it also surfaces additional areas for research in paired elec-
trolysis. It will be of interest to identify reactions that employ the same 
electrolyte on each side, thus reducing the risk of changes in pH and/or 
metal cation concentration over the course of extended reaction stud-
ies. Similarly, continuing to identify the mechanistic contributors to 
overpotentials—both cathodic and anodic—will be a worthwhile effort 
to inform their practical minimization within coupled electrolysis 
systems. Producing liquid products at high concentrations remains 
a priority in all studies in which liquid:liquid product separation is to be 
anticipated, and continued progress in ultrahigh selectivities towards 
a single desired product is of continued interest.

Methods
Electrode preparation
The cathode electrode was prepared by sputtering Ag with different 
thickness onto a piece of carbon paper gas diffusion electrode (Sigracet 
39 BB, Fuel Cell Store) at a rate of 1 Å s−1 by using a pure Ag target 
(99.99%). To fabricate the anode electrode, we first etched the Ti fibre 
felts (Fuel Cell Store) in a 10 wt.% oxalic acid aqueous solution at 98 °C 
for 40 min. The etched Ti fibre felts were washed by deionized water and 
then dried at room temperature. Commercial carbon-supported metal 
nanoparticles (60 wt.% Pt on vulcan XC-72R, Fuel Cell Store, 4–5 nm; 
60 wt.% Pd on Vulcan XC-72R, Fuel Cell Store, 6–8 nm; 40 wt.% Ru on 
vulcan XC-72R, Fuel Cell Store, 4–6 nm; or 40 wt.% Au on Ketjenblack, 
Fuel Cell Store, 3–6 nm) were dispersed in the mixture of deionized 
water, isopropanol and Nafion perfluorinated resin solution (5 wt.%, 
Sigma-Aldrich) and ultrasonicated for 90 min. The well-dispersed 
suspension was then spray coated on Ti fibre felts to prepare anode 
electrodes with different metal loadings.

Materials characterization
SEM and transmission electron microscopy images were taken through 
a Hitachi FE-SEM SU8230 scanning electron microscope at 1 kV and 
a Hitachi HF-3300 scanning/transmission electron microscope at 
300 kV, respectively. XRD was recorded on a Rigaku MiniFlex600 X-ray 
diffractometer with Cu-Kα radiation. XPS measurement was carried out 
using a PerkinElmer 5600 XPS spectrometer using a monochromatic 
aluminium X-ray source.

Electrochemical measurements
The electrochemical measurements were conducted using an electro-
chemical station (AUT5113) with a two-electrode system in a flow cell 
(Supplementary Fig. 3). Cathode electrodes, CEM (Nafion 117, Fuel Cell 
Store), and anode electrodes were positioned and clamped together 
via polytetrafluoroethylene gaskets. The geometric area of the cathode 
electrode in the flow cell is 0.49 cm2. In the CO2RR-OER system, 3 M KCl 
aqueous solution with different pHs adjusted by H2SO4 and 0.05 M KOH 
aqueous solution were introduced into the cathode chamber and anode 
chamber, respectively. In the CO2RR-AOR system, 3 M KCl aqueous solu-
tion adjusted by H2SO4 to pH 1 as catholyte and different concentrations 
of allyl alcohol in KOH aqueous solution or different concentrations of 
H2SO4/K2SO4 as anolyte were introduced into the cathode chamber and 
anode chamber, respectively. The electrolytes were circulated using 
peristaltic pumps at the rate of 5 ml min−1. CO2 gas (Linde, 99.99%) 
was continually supplied to the gas chamber of the flow cell during 
CO2RR (without specification, the CO2 feed rate is 20 ml min−1). During 
long-term operation, fresh electrolytes were continually provided to 
the cathode and anode chambers using peristaltic pumps. A gas chro-
matograph (Shimadzu GC-2014ATF) equipped with thermal conduc-
tivity and flame ionization detectors was used to examine the CO2RR 
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Fig. 5 | Comparison of estimated energy consumption for the production 
of 1 kg of CO. For CO2RR-AOR systems, the energy consumption for AOR liquid 
product separation is included. BPM, bipolar membrane; AEM, anion exchange 
membrane; MEA, membrane electrode assembly.
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gas products. NMR spectrometer (Agilent DD2 600 MHz) was used to 
analyse the liquid products generated in cathodic CO2RR and anodic 
allyl alcohol oxidation with dimethylsulfoxide as an internal standard. 
Combined with NMR results, gas chromatography–mass spectrometry 
(Thermo ISQ7000) was further used to analyse all the liquid products 
generated in anodic allyl alcohol oxidation. The acrolein and acrylic 
acid/acrylate produced in anodic AOR were quantified using HPLC 
(Thermo Scientific DIONEX UltiMate 3000; Aminex HPX-87H 300 × 
7.8 mm column) with an aqueous solution of 0.005 M H2SO4 as eluate.

CO2 SPU calculation
As only CO and formic acid were generated in our system during CO2RR, 
under 293.15 K and 101,325 Pa, the CO2 SPU is calculated as

CO2SPU = Total current [A] × (FEco+FEHCOOH) × 60 [s]
2 × Faraday′s constant [Cmol−1]

÷
CO2 feed rate [ m3

min
] × 1 [min]

8.314 [Jmol−1 K−1]×293.15 [K]

101300 [Pa]

.
(1)

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available within the paper, Supplementary Information and 
source data file. Source data are provided with this paper.
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